Part Number Hot Search : 
OMSTS UM600 TLV43 AM29F40 UM600 00160 C2073 SM6J48A
Product Description
Full Text Search
 

To Download SGB15N12007 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  sgb15n120 power semiconductors 1 rev. 2_2 apr 07 fast igbt in npt-technology ? 40% lower e off compared to previous generation ? short circuit withstand time ? 10 s ? designed for: - motor controls - inverter - smps ? npt-technology offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability ? pb-free lead plating; rohs compliant ? qualified according to jedec 1 for target applications ? complete product spectrum and pspice models : http://www.infineon.com/igbt/ type v ce i c e off t j marking package sgb15n120 1200v 15a 1.5mj 150 c gb15n120 pg-to-263-3-2 maximum ratings parameter symbol value unit collector-emitter voltage v ce 1200 v dc collector current t c = 25 c t c = 100 c i c 30 15 pulsed collector current, t p limited by t jmax i cpuls 52 turn off safe operating area v ce 1200v, t j 150 c - 52 a gate-emitter voltage v ge 20 v avalanche energy, single pulse i c = 15a, v cc = 50v, r ge = 25 ? , start at t j = 25 c e as 85 mj short circuit withstand time 2 v ge = 15v, 100v v cc 1200v, t j 150 c t sc 10 s power dissipation t c = 25 c p tot 198 w operating junction and storage temperature t j , t stg -55...+150 soldering temperature (reflow soldering, msl1) - 245 c 1 j-std-020 and jesd-022 2 allowed number of short circuits: <1000; time between short circuits: >1s. g c e pg-to-263-3-2 (d2-pak)
sgb15n120 power semiconductors 2 rev. 2_2 apr 07 thermal resistance parameter symbol conditions max. value unit characteristic igbt thermal resistance, junction ? case r thjc 0.63 thermal resistance, junction ? ambient 1) r thja 40 k/w electrical characteristic, at t j = 25 c, unless otherwise specified value parameter symbol conditions min. typ. max. unit static characteristic collector-emitter breakdown voltage v (br)ces v ge =0v, i c =1000 a 1200 - - collector-emitter saturation voltage v ce(sat) v ge = 15v, i c =15a t j =25 c t j =150 c 2.5 - 3.1 3.7 3.6 4.3 gate-emitter threshold voltage v ge(th) i c =600 a, v ce = v ge 3 4 5 v zero gate voltage collector current i ces v ce =1200v,v ge =0v t j =25 c t j =150 c - - - - 200 800 a gate-emitter leakage current i ges v ce =0v, v ge =20v - - 100 na transconductance g fs v ce =20v, i c =15a 11 - s dynamic characteristic input capacitance c iss - 1250 1500 output capacitance c oss - 100 120 reverse transfer capacitance c rss v ce =25v, v ge =0v, f =1mhz - 65 80 pf gate charge q gate v cc =960v, i c =15a v ge =15v - 130 175 nc internal emitter inductance measured 5mm (0.197 in.) from case l e - 7 - nh short circuit collector current 2) i c(sc) v ge =15v, t sc 5 s 100v v cc 1200v, t j 150 c - 145 - a 1) device on 50mm*50mm*1.5mm epoxy pcb fr4 with 6cm 2 (one layer, 70 m thick) copper area for collector connection. pcb is vertical without blown air. 2) allowed number of short circuits: <1000; time between short circuits: >1s.
sgb15n120 power semiconductors 3 rev. 2_2 apr 07 switching characteristic, inductive load, at t j =25 c value parameter symbol conditions min. typ. max. unit igbt characteristic turn-on delay time t d(on) - 18 24 rise time t r - 23 30 turn-off delay time t d(off) - 580 750 fall time t f - 22 29 ns turn-on energy e on - 1.1 1.5 turn-off energy e off - 0.8 1.1 total switching energy e ts t j =25 c, v cc =800v, i c =15a, v ge =15v/0v, r g =33 ? , l 1) =180nh, c 1) =40pf energy losses include ?tail? and diode reverse recovery. - 1.9 2.6 mj switching characteristic, inductive load, at t j =150 c value parameter symbol conditions min. typ. max. unit igbt characteristic turn-on delay time t d(on) - 38 46 rise time t r - 30 36 turn-off delay time t d(off) - 652 780 fall time t f - 31 37 ns turn-on energy e on - 1.9 2.3 turn-off energy e off - 1.5 2.0 total switching energy e ts t j =150 c v cc =800v, i c =15a, v ge =15v/0v, r g =33 ? , l 1) =180nh, c 1) =40pf energy losses include ?tail? and diode reverse recovery. - 3.4 4.3 mj 1) leakage inductance l and stray capacity c due to dynamic test circuit in figure e.
sgb15n120 power semiconductors 4 rev. 2_2 apr 07 i c , collector current 10hz 100hz 1khz 10khz 100khz 0a 10a 20a 30a 40a 50a 60a 70 a t c =110c t c =80c i c , collector current 1v 10v 100v 1000v 0.1a 1a 10a 100a dc 1ms 200 s 50 s 15 s t p =2 s f , switching frequency v ce , collector - emitter voltage figure 1. collector current as a function of switching frequency ( t j 150 c, d = 0.5, v ce = 800v, v ge = +15v/0v, r g = 33 ? ) figure 2. safe operating area ( d = 0, t c = 25 c, t j 150 c) p tot , power dissipation 25c 50c 75c 100c 125c 0w 25w 50w 75w 100w 125w 150w 175w 200w i c , collector current 25c 50c 75c 100c 125c 0a 5a 10a 15a 20a 25a 30a 35a t c , case temperature t c , case temperature figure 3. power dissipation as a function of case temperature ( t j 150 c) figure 4. collector current as a function of case temperature ( v ge 15v, t j 150 c) i c i c
sgb15n120 power semiconductors 5 rev. 2_2 apr 07 i c , collector current 0v 1v 2v 3v 4v 5v 6v 7v 0a 10a 20a 30a 40a 5 0a 15v 13v 11v 9v 7v v ge =17v i c , collector current 0v 1v 2v 3v 4v 5v 6v 7v 0a 10a 20a 30a 40a 5 0a 15v 13v 11v 9v 7v v ge =17v v ce , collector - emitter voltage v ce , collector - emitter voltage figure 5. typical output characteristics ( t j = 25 c) figure 6. typical output characteristics ( t j = 150 c) i c , collector current 3v 5v 7v 9v 11 v 0a 10a 20a 30a 40a 50 a t j =-40c t j =+150c t j =+25c v ce(sat) , collector - emitter saturation voltage -50c 0c 50c 100c 150c 0v 1v 2v 3v 4v 5v 6v i c =30a i c =15a i c =7.5a v ge , gate - emitter voltage t j , junction temperature figure 7. typical transfer characteristics ( v ce = 20v) figure 8. typical collector-emitter saturation voltage as a function of junction temperature ( v ge = 15v)
sgb15n120 power semiconductors 6 rev. 2_2 apr 07 t , switching times 0a 10a 20a 30a 40a 10ns 100ns 1 000ns t r t d(on) t f t d(off) t , switching times 0 ? 25 ? 50 ? 10ns 100ns 1000ns t r t d(on) t f t d(off) i c , collector current r g , gate resistor figure 9. typical switching times as a function of collector current (inductive load, t j = 150 c, v ce = 800v, v ge = +15v/0v, r g = 3 3 ? , dynamic test circuit in fig.e ) figure 10. typical switching times as a function of gate resistor (inductive load, t j = 150 c, v ce = 800v, v ge = +15v/0v, i c = 15a, dynamic test circuit in fig.e ) t , switching times -50c 0c 50c 100c 150c 10ns 100ns 1000ns t r t d(on) t f t d(off) v ge(th) , gate - emitter threshold voltage -50c 0c 50c 100c 150c 0v 1v 2v 3v 4v 5v 6v typ. min. max. t j , junction temperature t j , junction temperature figure 11. typical switching times as a function of junction temperature (inductive load, v ce = 800v, v ge = +15v/0v, i c = 15a, r g = 33 ? , dynamic test circuit in fig.e ) figure 12. gate-emitter threshold voltage as a function of junction temperature ( i c = 0.3ma)
sgb15n120 power semiconductors 7 rev. 2_2 apr 07 e , switching energy losses 0a 10a 20a 30a 40a 50 a 0mj 2mj 4mj 6mj 8mj 10mj 12mj 14mj e on * e off e ts * e , switching energy losses 0 ? 25 ? 50 ? 75 ? 0mj 1mj 2mj 3mj 4mj 5mj e ts * e on * e off i c , collector current r g , gate resistor figure 13. typical switching energy losses as a function of collector current (inductive load, t j = 150 c, v ce = 800v, v ge = +15v/0v, r g = 3 3 ? , dynamic test circuit in fig.e ) figure 14. typical switching energy losses as a function of gate resistor (inductive load, t j = 150 c, v ce = 800v, v ge = +15v/0v, i c = 15a, dynamic test circuit in fig.e ) e , switching energy losses -50c 0c 50c 100c 150c 0mj 1mj 2mj 3mj 4mj e ts * e on * e off z thjc , transient thermal impedance 1s 10s 100s 1ms 10ms 100ms 1 s 10 -3 k/w 10 -2 k/w 10 -1 k/w 0.01 0.02 0.05 0.1 0.2 single pulse d =0.5 t j , junction temperature t p , pulse width figure 15. typical switching energy losses as a function of junction temperature (inductive load, v ce = 800v, v ge = +15v/0v, i c = 15a, r g = 33 ? , dynamic test circuit in fig.e ) figure 16. igbt transient thermal impedance as a function of pulse width ( d = t p / t ) *) e on and e ts include losses due to diode recovery. *) e on and e ts include losses due to diode recovery. *) e on and e ts include losses due to diode recovery. c 1 = r 1 r 1 r 2 c 2 = r 2 r ,(k/w) , (s) 0.09751 0.67774 0.29508 0.11191 0.13241 0.00656 0.10485 0.00069
sgb15n120 power semiconductors 8 rev. 2_2 apr 07 v ge , gate - emitter voltage 0nc 50nc 100nc 150nc 0v 5v 10v 15v 20v u ce =960v c , capacitance 0v 10v 20v 30v 100pf 1nf c rss c oss c iss q ge , gate charge v ce , collector - emitter voltage figure 17. typical gate charge ( i c = 15a) figure 18. typical capacitance as a function of collector-emitter voltage ( v ge = 0v, f = 1mhz) t sc , short circuit withstand time 10v 11v 12v 13v 14v 15v 0 s 10 s 20 s 30 i c(sc) , short circuit collector current 10v 12v 14v 16v 18v 20v 0a 50a 100a 150a 200a 250a 300a v ge , gate - emitter voltage v ge , gate - emitter voltage figure 19. short circuit withstand time as a function of gate-emitter voltage ( v ce = 1200v, start at t j = 25 c) figure 20. typical short circuit collector current as a function of gate-emitter voltage (100v v ce 1200v, t c = 25 c, t j 150 c)
sgb15n120 power semiconductors 9 rev. 2_2 apr 07 pg-to263-3-2
sgb15n120 power semiconductors 10 rev. 2_2 apr 07 figure a. definition of switching times i rrm 90% i rrm 10% i rrm di /dt f t rr i f i,v t q s q f t s t f v r di /dt rr q=q q rr s f + t=t t rr s f + figure c. definition of diodes switching characteristics p(t) 12 n t(t) j figure d. thermal equivalent circuit figure b. definition of switching losses figure e. dynamic test circuit leakage inductance l =180nh, and stray capacity c =40pf.
sgb15n120 power semiconductors 11 rev. 2_2 apr 07 edition 2006-01 published by infineon technologies ag 81726 mnchen, germany ? infineon technologies ag 4/27/07. all rights reserved. attention please! the information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics (?beschaffenheitsgarantie?). with respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, infineon technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. information for further information on technology, delivery terms and conditions and prices please contact your nearest infineon technologies office ( www.infineon.com ). warnings due to technical requirements components may contain dangerous substances. for information on the types in question please contact your nearest infineon technologies office. infineon technologies components may only be used in life-support devices or systems with the express written approval of infineon technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. if they fail, it is reasonable to assume that the health of the user or other persons may be endangered.


▲Up To Search▲   

 
Price & Availability of SGB15N12007

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X